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Abstract. The method of construction of the wavefunction of a Cooper pair based on 
the Pauli exclusion principle and the Mackey-Bradley theorem is developed. Tables of 
symmetrized and antisymmetrized Kronecker squares of single- and double-valued irre- 
duciblerepresentationsofthegroups 0: andD:, are obtained. The tablesare used tosearch 
for p i n t s  in Ihe Brillouin zone where totally symmetric Cooper pain can exist. It is shown 
that. in thesymmetrical pointsanddirectionsin a Brillouin zone, adirectconnection between 
the multiplicity and parity ofthe Cooper pair wavefunction does not exist. 

1. Introduction 

Group theoretical approaches to the wavefunction of a Cooper pair are mainly due to 
Anderson (1959,1984) and Anderson and Morel (1961). Anderson (1959) pointed out 
the time inversion connection between the wavefunctions of the electrons in a singlet 
pair. The total momentum and spin of such a pair are equal to zero, and its wavefunction 
belongs to the totally symmetric irreducible representation (IR) AIg Anderson and 
Morel (1961) pointed out the possibility of condensation of fermion pairs with non-zero 
total orbital momentum in liquid 3He and transition metals. After the discovery of 
heavy-fermion superconductors with probable triplet Cooper pairing, the theory was 
generalized. According to Anderson’s (1984) approach, the wavefunctions of electrons 
in a triplet Cooper pair may be connected by time and space inversion and the product 
of these operations. In this approximation the orbital part of a triplet pair is odd 
(ungerade) and orbital part of a singlet pair is even (gerade). It is obvious that when 
symmetryisreduced tocrystalpoint groupwithinversion. theparityofthe wavefunction 
is conserved. 

Volovik and Gor’kov (1985) and Blount (1985) also pointed out that the orbital part 
of a triplet pair is odd and one of a singlet pair is even. They considered the subgroups 
of Oh, D6h and D,, point symmetries, where the superconducting order parameter 
belongs to the one-dimensional IR. The same results on the superconducting order 
parameter were obtained by Ozski 2nd Machida (1989). Ueda and Rice (1985) inves- 
tigated the influence of spin-orbit coupling on the symmetry of the superconducting 
order parameter in point symmetry 0. Sigrist and Rice (1987) classified symmetries of 
superconducting states in high-T,superconductors with and without spin-coupling. The 
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authors of all the above-mentioned theories used a point group approach to describe the 
wavefunction of a Cooper pair and the superconducting order parameter. In this case 
the spin part of the wavefunction of a Cooper pair belongs to an even IR,  and it is obvious 
that in the L S  coupling approximation, the total wavefunction of a triplet Cooper pair 
(i.e. the direct product of its spin and orbital parts) will never belong to the totally 
symmetricAIgie. Weshall show below that, inaspacegroupapproach, totally symmetric 
triplet Cooper pairs can exist in some points or directions in Brillouin zone without any 
symmetry reduction. 

lzyumov ef al(1989) suggested constructing the wavefunction of a Cooper pair as a 
direct (Kronecker) product of electron wavefunctions belonging to the space group I R .  
They proposed that in a space group approach the direct connection between multiplicity 
and pant yo facooperpairmay be not validinsomesymmetricalpointsof aone-electron 
Brillouin zone. Yarzhemsky (1990) showed that this approach must be used in time- 
reversal symmetry breaking and applied the Pauli exclusion principle. According to the 
Pauli exclusion principle, the orbital part of a singlet pair belongs to the symmetrized 
Kronecker square and the orbital part of a triplet pair belongs to the antisymmetrized 
Kronecker square. It should be emphasized that the symmetrized and antisymmetrized 
Kronecker squares of IRS for the groups 02 and 01 obtained by Birman (1974) may be 
used for the symmetry group 0: of the heavy-fermion superconductor UBe,,, if the 
wavevector k is inside the Brillouin zone. So we can see from Birman's (1974) tables that 
the above-mentioned direct connection between multiplicity and parity of the wave- 
function of a Cooper pair is violated in some symmetrical directions in the Brillouin 
zone, when we change from point groups to real space groups. The latter statement is 
in agreement with the proposition of Izyumov er a/ (1989). 

The present work isaimed at elucidating the consequencesof permutation symmetry 
and the structure of the space group on the symmetry of the wavefunction of the Cooper 
pair. We construct the wavefunction of a Cooper pair. making use of the Pauli exclusion 
principle and Mackey's (1953) theorem on the symmetrized and antisymmetrized 
squares of induced representations. We present the tables of symmetrized and anti- 
symmetrized Kronecker squares of single-valued and double-valued IRS for the sym- 
metry groups 0: and D f  of heavy-fermion superconductors UBe13 and UPt,, 
respectively. The crystal structures of these superconductors correspond to the data 
reported by Ozaki and Machida (1989). The tables are used to search for points and 
directions in a Brillouin zone, where totally symmetric (Alg) singlet and triplet Cooper 
pairs can exist without any symmetry violation of the crystal. G S  and j-j coupling 
approximations are considered. 
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2. Theory 

We show briefly how the physical problem that we are treating leads inevitably to the 
mathematical methods mentioned above. The wavefunction of a double-electron state 
is constructed as a direct (Kronecker) product of one-electron wavefunctions. If these 
electrons are equivalent, the requirement of antisymmetry of the total wavefunction 
permits us to carry out the partial reduction in the total wavefunction and to obtain 
symmetries of singlet and triplet states. We can do no more than to consider a Cooper 
pair in a solid as a state of two equivalent electrons obeying the Pauli exclusion principle. 
So in the L S  coupling approximation the antisymmetrized Kronecker square of the 
spin part of the wavefunction (singlet pair) is combined with the symmetrized Kronecker 
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Table 1. The Kronecker squares of IRS of group 0; (only parts with zero total momentum 
are included). The points and directions in a Brillouin zone are marked according to figure 
1. Thesymmetrized square is for rhesinglet pair in L-Scoupling; theantisymmetrizedsquare 
is for the triplet pair in L-Scouplingand for the pair inj-jcoupling. Kovalev's(l986) notation 
is used for the single-valued IRS (t,) and the double-valued IRS (p,) of the wavevector group. 
The spectroscopic notation is used for IRS at point r (Hammermesh 1964, Kovalev 1986). 

Wavevector 
subgroup Symmetrized square Antisymmetrized square 
IR IR IR 

Tzu +T,, 
A,, + A,. + Ah + E, + 2E. + ZT,. + ZT,. + TZL 

square of an orbital part of the wavefunction and the symmetrized square of the spin 
part (triplet pair) iscombined with antisymmetrized square of theorbital part. In the j-j 
coupling approximation the wavefunction of a Cooper pair belongs to the anti- 
symmetrized Kronecker square of the double-valued IR of the space group. 

In thissection we consider the L-Scoupling only, but the results on the j-jcoupling 
are included in tables 1 and 2. In this case the orbital components of the wavefunctions 
of the electrons in a Cooper pair belong to IRS of the crystal space group. We investigate 
properly only the case when the spin part of the wavefunction belongs to space groups 
l ~ s i n  thecentreof theBrillouinzone (Tpoint),i.e. double-valued~~sof the point group, 
but tables 1 and 2 can be used for all types of spin wavefunctions. When symmetrizing 
characters of double-valued IRS of point groups, we may easily obtain IRS of the spin 
components of triplet pairs T,, and E,, + AZg for groups Oh and D,, respectively. The 
spin components of singlet pairs belong to IRS A,, for both groups. 

In real crystals the orbital component of the electron wavefunction in the G S  
approximation and the total wavefunction in thej-j approximation belong to the single- 
valued or double-valued IR of the space group. According to Bradley and Cracknell 
(1972) and Altman (1977) the IRS of the space group G are obtained by the induction of 
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Table 2. Kronecker squares of IRS of gmup DA (only parts w i t h  zero total momentum are 
included). The points and directions in a Brillouin zone are marked according to figure 2. 
The other notation is as tor table I ,  

~~ 

Wavevector 
subgroup Symmetrized square 
IR I R  

Antisymmetrized square 
IR 

IRS D'. (small IRS) of the wavevector k group H (subgroup) into the space group. \Ve 
denote th<se iRS according to Bradley and Cracknell(1972) as Dx t G. The method of 
the dccomposirion of Kronecker squares of induced representations into symmetrized 
and antisymmerrized parts was developed by hlackey (1953), and applied to space 
groups b! Bradlcy and Davies (1970). Let us consider the main statements of the 
hlackey-Bradley theorem and its application to Cooper pairing. 

The structure of the Kronecker square of an induced i~ may be easily envisaged b) 
the double coset decomposition of G r e l a h e  to H which is written as 
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G = Hd,H. 
0 

For every do in (1) including the identity element d ,  we introduce the subgroup 
MO = H fl d,Hd;' and consider its representation, given by the formula 

Po = Dk(m)  @ D'(d;'md,). 

k + d,k = k ,  + b,  

(2) 

(3) 

The wavevector k, of this representation is defined by the relation 

where bo is a vector of a reciprocal lattice. 

P,  into subgroup M :  = M ,  + aM, ,  which are defined by their characters as 
If olisa self-inverse double coset (i.e. Hd,H = HdZ'H) there are two extensions of 

XU':@)) = x ( W a m a m ) )  (4) 

x(P;(am)) = - x ( D k ( m " ) )  ( 5 )  

Then the symmetrized and antisymmetrized parts of the Kronecker square of the 
induced representation (in our case the IR Dk T G of the space group) are given by the 
two following formulae: 

[(oh t G)@(D* t G)] = [ D k @ D k ]  T G + x P P :  T G + x P  B TG (7) 

{(Dk I' G ) @ ( D k  T G)) = { D k @ D k l  G + P i  t G + P p t G. (8) 

El B 

(1 0 

The first items on the right-hand sides of (7) and (8) correspond to the double coset 
defined by the identity element. The summations in the second items on the right-hand 
sidesof (7) and (8) runoverallself-inverse doublecosets cr. Indexj3inthelastsummations 
on the right-hand sides of (7) and (8) corresponds to couples of non-self-inverse double 
cosets HdpH # Hdi'H. According to the Pauli exclusion principle the symmetrized 
Kronecker square (equation (7)) defines the orbital part of the singlet state (anti- 
symmetrized with respect to spin coordinates) and the antisymmetrized Kronecker 
square (equation (8)) defines the orbital part of the triplet state (symmetrized with 
respect to spin coordinates). It follows from the Mackey-Bradley theorem that the 
symmetries of these states are different for identity and self-inverse double cosets and 
are the same for non-self-inverse double cosets. This does not mean of course that the 
same mcannot appear in thedecompositionof the two firstitemsonthe right-handsides 
in equations (7) and (8) simultaneously. These double-electron states may correspond to 
Cooper pairs if the wavevector k, of a pair which is given by equation (3) equals zero. 

We intend now to envisage the dependence of the symmetry of a Cooper pair 
upon its multiplicity and the value of the one-electron wavevector. If the one-electron 
wavevector is in the centre of the Bnllouin zone, we have only one double coset, defined 
bytheidentityelement and wemayuse the theoryofpoint groupr~s(Hamermesh 1964). 
It isobvious that in this case both the singlet and the triplet pairs have even orbital parts. 
The antisymmetrized squares for the one-dimensional IRS vanish, and therefore triplet 
pairs are forbidden. If the one-electron wavevector equals the half-integer vector of the 
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reciprocal lattice, the wavevector of a Cooper pair given by equation (3) equals zero for 
the identity double coset. It follows from equations (7) and (8) that, if space inversion 
belongs to H ,  we get only even IRS of H for symmorphic space groups in this case. 
However, if the space group is non-symmorphic, additional phase multipliers arise in 
the decomposition of the Kronecker square (Murav'ev and Yarzhemsky 1986) and even 
andodd~~sofHwil l  bemixedin thedecompositionofsymmetrizedandantisymmetrized 
squares. It is clear that, when we induce IRS from H to G, the panty of representation is 
conserved. Hence it follows that, if the one-electron wavevector equals the half-integer 
vector of the reciprocal lattice and the space group is symmorphic, the orbital parts 
of the triplet and singlet Cooper pairs are even, but the direct connection between 
multiplicity and parity of the wavefunction of the Cooper pair does not exist for non- 
symmorphic space groups in this case. 

We are now in a position to use the Mackey-Bradley theorem and to investigate the 
validity of the proposition of Izyumov el al(l989) that the direct connection between 
multiplicity and parity of the wavefunction of a Cooper may be violated for two- 
dimensional small IRS inside the Brillouin zone. Let us consider the case of non-equiv- 
alent vectors k and -k inside the Brillouin zone. In this case we can take space inversion 
as a representative element of the self-inverse double coset. As follows from equation 
(3), the total momentum of such a pair is equal to zero. The signs of the representations 
P,' and P; defined by equations (4) and (5) are opposite if the group element belongs 
to the left coset defined by space inversion, but this does not mean that P,' and Pi may 
be decomposed onto IRS of opposite parity. Let us consider two cases. If the IR is two 
dimensional, the two characters of P,' and P; for the identity element are equal to 4. It 
follows from equations (4) and (5) that the characters of PL and P; for inversion equal 
to 2 and -2, respectively. It is obvious that in this case both even and odd IRs 
will be mixed in the decomposition of P: 1' G and P; t G. Another case takes place 
if the IR is one dimensional and the characters are such that xZ(Dk(m))  = 1 and 
x(Dk((m')) = 1. In this case the character for the left coset defined by inversion is 
equal to 1 in the representation P,' and to -1 in the representation P;. It follows 
that P:  T G is decomposed on the even IR of G, and Pi t G on the odd IRs only. If 
group H consists of the identity element only, we may easily deduce from equations (4) 
and (5) and the Frobenius reciprocity theorem that P: 1' G contains only even IRS and 
P; 7 G only odd IRS of G. The frequency of appearance of each representation is equal 
to its dimension. Therefore, in a space group approach the wavefunction of a singlet 
pair is even and the wavefunction of a triplet pair is odd if the k-vector of the electron 
belongs to a non-symmetric direction inside the Brillouin zone. 

The decompositions of Kronecker squares of IRS of space groups Of and D& are 
given in tables 1 and 2, respectively. Kovalev (1965,1986) projective single-valued and 
double-valued IRS ti and p, are used for small IRS. The Brillouin zones are shown in figures 
1 and 2. 
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3. Discussion 

According to Volovik and Gor'kov (1985). the total Cooper pair wavefunction is the 
superconductingorder parameter. From tables 1 and2wecanfind pointsin the Brillouin 
zone and small one-electron IRS for which a superconducting phase transition is possible 
in the space groups under consideration. The spin function of a singlet pair belongs to 
IR A,, in both groups. The total wavefunction in the L-S coupling approximation is a 
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X'  

Figure 1. Brillouin zone for the Cf lattice (space 
group, O$). The points and directions are marked 
according to Kovalev (1986). 

Figure 2. Brillouin zone for the H lattice (space 
group. Dih). The points and directions are marked 
according to Kovalev (1986). 

direct product of orbital and spin parts. It follows that the superconducting order 
parameter of the singlet pair is totally symmetric, if the symmetrized Kronecker square 
of the orbital component of the wavefunction belongs to IR AIK It is seen from tables 1 
and 2 that totally symmetric singlet Cooper pairs can exist in all the IRS considered, 
except IRst2(L) and t,(L)ofgroup 0;. (WeindicatethepointordirectionintheBrillouin 
zone in parentheses.) The spin part of the triplet pair belongs to I R S T , ~  in the 0; group 
and to El, + A?, in the Dih group. So totally symmetric triplet Cooper pairs are possible 
ifthese i~sappearin the antisymmetrizedsquareoftheorbitalpart. It isseenfrom tables 
1 and 2 that this is the case for the two-dimensional small IRs t,(X'), tlo(X'), ts(A') and 
t3(A)ingroupOi and for the two-dimensional small IRS t,(A), tJ(A), t6(A), t,(K), t,(K) 
and t,(H), t2(H) and t3(H) in group D&. It is obvious from the evidence given in the 
previous section that, in non-symmetric points inside the Brillouin zone, singlet pairs 
with A,, symmetry are always possible but totally symmetric triplet pairs are forbidden. 

The criterion of existence of totally symmetric Cooper pairs in the j-j approximation 
is quite straightforward: the antisymmetrized Kronecker square of the double-valued 
IR of space group includes A,, IR. From tables 1 and 2, we come to the conclusion that 
totally symmetric Cooper pairs are possible for all double-valued IRS considered in Ok 
group except point L and one-dimensional IRS pl(A) and p2(A). In the Dth group we 
have A,, in the antisymmetrized square of all double-valued IRS considered except the 
IRSP~(L).P~(L),PI(H),~~(H),~~(H)~~J(H).~,(A)~~~~~(A). Innon-symmetricpoints 
of the Brillouin zone, the antisymmetrized square of the double-valued i~ contains only 
odd IRS and, in the j-j coupling approximation, totally symmetric Cooper pairs are 
forbidden. 

4. Conclusion 

In the case of real crystals the space group approach is a quite straightforward gen- 
eralization of the Anderson (1984) point group approach to the wavefunction of a 
Cooper pair. We showed that the application of the Mackey-Bradley theorem and 
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the Pauli exclusion principle makes it possible to investigate the symmetry of the 
wavefunction of aCooper pair in crystals. In the space group approach the wavefunction 
of a singlet Cooper pair is even and the wavefunction of a triplet pair is odd if the 
wavevector oftheelectron isinside theBrillouinzone and the small iRisone dimensional. 
Thisstatementis inagreement withtheresultsofAnderson(1984). VolovikandGor’kov 
(1985) and Blount (1985), but this direct connection between multiplicity and parity of 
the wavefunction of a Cooper pair is violated on the surface of the Brillouin zone and 
for two-dimensional small IRS inside the Brillouin zone. We have obtained tables of 
symmetrized and antisymmetrized squares with zero total wavevector of IRS for the 
symmetry groups O i  and D& of the heavy-fermion superconductors UBell and UPt,. 

These tables may be used for the symmetry description of Cooper pairs in these 
materials. In a space group approach, triplet Cooper pairs with totally symmetric 
(Atg) wavefunction can exist in some symmetrical points and directions in one-electron 
Brillouin zone without any symmetry violation of a crystal. 
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